Wong-Zakai type approximations of rough random dynamical systems by smooth noise

نویسندگان

چکیده

This paper is devoted to the smooth and stationary Wong-Zakai approximations for a class of rough differential equations driven by geometric fractional Brownian path $\boldsymbol{\omega}$ with Hurst index $H\in(\frac{1}{3},\frac{1}{2}]$. We first construct approximation $\boldsymbol{\omega}_{\delta}$ probabilistic arguments, then using theory obtain solution on any finite interval. Finally, both original system approximative generate continuous random dynamical systems $\varphi$ $\varphi^{\delta}$. As consequence solution, $\varphi^{\delta}$ converges as $\delta\rightarrow 0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wong-Zakai type convergence in infinite dimensions

The paper deals with convergence of solutions of a class of stochastic differential equations driven by infinite-dimensional semimartingales. The infinite-dimensional semimartingales considered in the paper are Hilbert-space valued. The theorems presented generalize the convergence result obtained by Wong and Zakai for stochastic differential equations driven by linear interpolations of a finit...

متن کامل

Wong-zakai Approximations with Convergence Rate for Stochastic Partial Differential Equations

The goal of this paper is to prove a convergence rate for WongZakai approximations of semilinear stochastic partial di erential equations driven by a nite dimensional Brownian motion.

متن کامل

Synchronization by Noise for Order-preserving Random Dynamical Systems

We provide sufficient conditions for weak synchronization/stabilization by noise for order-preserving random dynamical systems on Polish spaces. That is, under these conditions we prove the existence of a weak point attractor consisting of a single random point. This generalizes previous results in two directions: First, we do not restrict to Banach spaces and second, we do not require the part...

متن کامل

Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem

We introduce the Stratonovich version of quantum stochastic calculus including integrals with respect to emission (creation), absorption (annihilation) and scattering (conservation) processes. The calculus allows us to consider the limit of regular open dynamical systems as a quantum Wong-Zakai approximation theorem. We introduce distinct definitions of Itô Dyson and Stratonovich Dyson time-ord...

متن کامل

Quantum Stratonovich Calculus and the Quantum Wong-Zakai Theorem

We extend the Itō-to-Stratonovich analysis or quantum stochastic differential equations, introduced by Gardiner and Collett for emission (creation), absorption (annihilation) processes, to include scattering (conservation) processes. Working within the framework of quantum stochastic calculus, we define Stratonovich calculus as an algebraic modification of the Itō one and give conditions for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2023

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2023.02.031